Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hazard Mater ; 471: 134364, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38657508

RESUMO

It is well known that arsenic is one of the most toxic elements. However, measuring total arsenic content is not enough, as it occurs in various forms that vary in toxicity. Since honey can be used as a bioindicator of environmental pollution, in the present study the concentration of arsenic and its species (As(III), As(V), DMA, MMA and AsB) was determined in honey samples from mostly Poland and Ukraine using HPLC-ICP-MS hyphenated technique. The accuracy of proposed methods of sample preparation and analysis was validated by analyzing certified reference materials. Arsenic concentration in honey samples ranged from 0.12 to 13 µg kg-1, with mean value of 2.3 µg kg-1. Inorganic arsenic forms, which are more toxic, dominated in honey samples, with Polish honey having the biggest mean percentage of inorganic arsenic species, and Ukrainian honey having the lowest. Furthermore, health risks resulting from the consumption of arsenic via honey were assessed. All Target Hazard Quotient (THQ) values, for total water-soluble arsenic and for each form, were below 1, and all Carcinogenic Risk (CR) values were below 10-4, which indicates no potential health risks associated with consumption of arsenic via honey at average or recommended levels.


Assuntos
Arsênio , Mel , Mel/análise , Cromatografia Líquida de Alta Pressão , Medição de Risco , Arsênio/análise , Espectrometria de Massas , Humanos , Contaminação de Alimentos/análise , Polônia , Solubilidade , Ucrânia , Água/química
2.
Foods ; 12(17)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37685138

RESUMO

The main objective of the research was to assess the influence of selected factors (type of wine, grape variety, origin, alcohol content and daily consumption) on the concentration levels of 26 elements in 53 Polish wine samples, also using chemometric analysis tools. Concentration of Al, As, B, Ba, Be, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Ni, Pb, Sb, Se, Sr, Ti, V, Zn and Zr was analyzed by ICP-MS, while concentration of Ca, Na, K and Mg was determined by ICP-OES. White wines were characterized by higher concentrations of Al, As, Be, Ca, Co, Cu, Fe, Hg, Li, Mg, Na, Pb, Sb, Ti, V, Zn and Zr (mean values: 0.075-86,403 µg·L-1 in white wines, 0.069-81,232 µg·L-1 in red wines). Red wines were characterized by higher concentrations of Ba, Cd, Cr, K, Mn, Se and Sr (mean values: 0.407-1,160,000 µg·L-1 in white wines, 0.448-1,521,363 µg·L-1 in red wines). The results obtained for the health risk assessment indices, including the Target Hazard Quotient (THQ, mean values per glass of wine: 2.097 × 10-5 (Cr)-0.041 (B) in all wines), indicate that the analyzed elements do not show a potential toxic effect resulting from wine consumption. The chemometric analysis confirmed that elements such as Li, Ti, Ca, Mn, Sr, Ba, Zn, Mg, Cu, Se and B were closely related to local conditions and soil properties, and the presence of Fe, Cr, V and Pb was related to contamination of the soil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...